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Including Future Tests in the Design of an Integrated 
Thermal Protection System 

Diane Villanueva1 and Raphael T. Haftka2, Bhavani V. Sankar3 
University of Florida, Gainesville, FL, 32611, USA 

It is common practice to test components after they are designed.  The uncertainty 
reduction that can occur after a test is usually not incorporated in reliability calculations at 
the design stage.  The reduction in uncertainty is accomplished by the additional knowledge 
provided by the test and by re-design when the test reveals that the component is unsafe or 
overly conservative. In this paper, we develop a methodology to estimate the effect of a single 
future thermal test and model the effect of the resulting uncertainty reduction on the design 
of an integrated thermal protection system.  An integrated thermal protection system 
protects space vehicles from the severe aerodynamic heating experienced during 
atmospheric reentry while also functioning as part of the load bearing structure. Using given 
distributions of computational and experimental errors and given re-design rules, we obtain 
possible outcomes of the future test through Monte Carlo sampling to determine what 
changes in probability of failure, design, and weight will occur.  In addition, Bayesian 
updating is used to gain accurate estimates of the probability of failure after a test.  We 
observe that performing a single test can reduce the probability of failure by orders of 
magnitude, on average, when the objective of re-design is to restore the original safety 
margins. We show that instead, re-design for a given reduced probability of failure allows 
additional weight reduction. 

Nomenclature 
  
d  = design variable 
Δdlim = limit of distance between test design and other design 
ds = insulation foam thickness 
dtest = design variable value of test article 
ec = computational error 
ec,true = true computational error 
eextrap  = extrapolation error 
ex =  experimental error 
ex,true = true experimental error 
fcalc(T) =  probability distribution function of the calculated temperature 
fPtrue(T) =  probability distribution function of the possible true temperature 
ftest(T) =  probability distribution function of test article temperature 
ftrue(T) =  probability distribution function of true temperature 
g =  limit state function 
I = indicator function 
ini =  initial 
inp = input 
ltest(T) = likelihood function of obtaining test article temperature 
M = number of samples of the capacity 
m =  mass per unit area 
N = number of samples of the response 
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pf,est = estimated probability of failure 
pf,true = true probability of failure 
pf,est-corr = test-corrected probability of failure estimate 
r = input random variable 
rtest = random variable value of test article 
Tcalc = calculated temperature  
Ttest = temperature of test article 
Ttest,true  = error free test temperature 
Ttrue = true temperature 
TPtrue = possible true temperature 
Tmeas  =  experimentally measured temperature 
upd  = updated  
 

I. Introduction 
n reliability based design optimization, uncertainties are considered when calculating the reliability of the 
structure.  Uncertainty is often compensated for with safety factors and knockdown factors in the design process. 

However, after design, it is customary for the component to undergo various uncertainty reduction measures 
(URMs).  Examples of URMs in the aerospace field include thermal and structural testing, inspection, health 
monitoring, maintenance, and improved analysis and failure modeling.  Since most components undergo these 
URMs, it would be beneficial to include their effects in the design process.  It would also be beneficial to design the 
URMs along with the component by optimizing the cost of more weight against the cost of additional tests, redesign, 
or improved analytical simulations. 
 This movement to include future tests can be seen in aircraft safety studies by Acar et al1,2, which investigated 
the effects of future tests on the final distribution of failure stress and structural design with varying numbers of tests 
at the coupon, element, and certification levels.  Kale et al3,4 also explored how simultaneous design of the structure 
and inspection schedule allows the trading of cost of additional structural weight against inspection cost in relation 
to stiffened panels affected by fatigue crack growth.  Studies such as those gave insight into the ability of future tests 
to reduce uncertainty and thus probability of failure, as well as compare these benefits against the cost of adding 
more structural weight to dispense with tests.   

In this study, we examine the effect of a single future thermal test in the design of an integrated thermal protection 
system (ITPS) by examining the associated costs along with the resulting change in probability of failure and weight 
that can result from the test.  An integrated thermal protection system protects space vehicles from the severe 
aerodynamic heating experienced upon atmospheric reentry while also providing some structural load bearing 
benefit.  The thermal test considered in this study measures the maximum temperature of the bottom face sheet, 
which is critical due to its proximity to the underlying vehicle structure.  A design is considered to have failed 
thermally if it exceeds the maximum allowable temperature. 
 In previous studies related to the optimization of the ITPS by Kumar et al5 and Villanueva et al6, probability of 
failure calculations considered only the variability in geometric and material parameters and error due to 
shortcomings in the analytical model.  Expanding on those studies, we include the information gained from a test in 
a temperature estimate, the reduction in uncertainty resulting from the test, and the ability of the test to capture any 
unexpected behaviors or dangerous designs.  Thereby, the objectives of this paper are to (1) present a methodology 
to both predict and include the effect of a future test, (2) examine the overall changes in design resulting from 
redesign based on the future test, and (3) illustrate the ability of a test to reduce the probability of failure even when 
a test shows we are computationally unconservative. 

A description of the ITPS is presented in Section II.  Next, the uncertainty model and probability of failure 
calculations are described in Section III.  Section IV continues with the methodology to calibrate the computational 
model based on a test and include redesign based on the test.  The method to simulate future tests is summarized in 
Section V.  Section VI presents an illustrative example that details the effect of including the test.   The paper then 
concludes with a summary and ideas for future work in Section VII, and, finally, acknowledgements and references.  

 

II. ITPS Description 
 Figure 1 shows the ITPS panel being studied, which is a corrugated core sandwich panel concept.  The 

design consists of a top face sheet and webs made of titanium alloy (Ti-6Al-4V), and a bottom face sheet made of 
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beryllium.  Saffil® foam is used as insulation between the webs.  The relevant geometric variables of the ITPS 
design are also shown on the unit cell in Figure 1.  These variables are the top face thickness (tT), bottom face 
thickness (tB), thickness of the foam (dS), web thickness (tw), corrugation angle (θ), and length of unit cell (2p).   

 

 
Figure 1. Corrugated core sandwich panel ITPS concept 

 
 Thermal analysis of the ITPS is done using 1-D heat transfer equations on a model of the unit cell.  The heat flux 
incident on the top face sheet of the panel is highly dependent on the vehicle shape as well as the vehicle’s 
trajectory.  As in previous studies by Bapanapalli7, incident heat flux on a Space Shuttle-like vehicle was used.  A 
large portion of the heat is radiated out to the ambient by the top face sheet, and the remaining portion is conducted 
into the ITPS.  We consider the worst-case scenario where the bottom face sheet cannot dissipate heat by assuming 
the bottom face sheet is perfectly insulated.  Also, there is no lateral heat flow out of the unit cell, so that heat flux 
on the unit cell is absorbed by that unit cell only.  For a more in-depth description of the model and boundary 
conditions, the reader is referred to the Bapanapalli reference7. 

The maximum temperature of the bottom face sheet of the ITPS panel is calculated using the quadratic response 
surface developed by Villanueva et al5.  It is a function of the previously described geometric variables and the 
density, thermal conductivity, and specific heat of titanium alloy, beryllium, and Saffil® foam.  The mass per unit 
area m of the ITPS is calculated using Eq.(1), where ρT, ρB, and ρw are the densities of the materials that make up the 
top face sheet, bottom face sheet, and web, respectively. 

 
  
m = ρT tT + ρBtB +

ρwtwds

psinθ
 (1) 

An experiment that finds the bottom face sheet temperature of a small ITPS panel is usually conducted in a 
vacuum chamber with heat applied to the top face sheet by heat lamps.  The sides of the panel are typically 
surrounded by some kind of insulation to prevent lateral heat loss.  The temperature of the bottom face sheet is 
found with thermocouples embedded into or in contact with the lower surface of the bottom face sheet.  

III. Uncertainty Modeling 
A. Classification of Uncertainties 

Oberkampf et al9 provided an analysis of different sources of uncertainty in engineering modeling and 
simulation, which was further used by Acar et al1.  We use a similar classification to categorize types of uncertainty 
as errors (uncertainties that apply equally to each ITPS) or variability (uncertainties that vary in each individual 
ITPS).  We can further describe errors as mostly epistemic and variability as aleatory.  It is important to distinguish 
between types of uncertainty because a specific uncertainty reduction measure may target either error or variability.  
Tests reduce errors by allowing us to calibrate analytical models.  For example, testing can be done to reduce the 
uncertainty in failure predictions due to high stresses.  Variability can be reduced by lowering tolerances in 
manufacturing.   Variability is modeled as random uncertainties that can be modeled probabilistically.  In contrast, 
errors are fixed for a given ITPS and are largely unknown, but here they are modeled probabilistically as well.     

Variability in material properties and construction of the ITPS leads to variability in the ITPS thermal response.   
More specifically, we will have variability in the calculated temperature due to the input variabilities.  We simulate 
this process with a Monte Carlo simulation (MCS) that generates values of the random variables r based on an 
estimated distribution and calculate the bottom face sheet temperature Tcalc for each, generating the probability 
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distribution function.  The calculated temperature distribution that reflects the random variability is denoted fcalc(T).  
In estimating the probability of failure, we also need to account for the modeling or computational error. We denote 
this computational error by ec,where ec is modeled as a uniformly distributed random variable within confidence 
limits in our computational model.  Unlike the variability, the error has a single value, and the uncertainty is due to 
our lack of knowledge. 

For a given design given by d and r, the possible true temperature TPtrue can be found by Eq.(2) in terms of 
possible computational errors ec.  The sign in front of ec is negative so a positive error implies a conservative 
calculation, meaning it overestimates the temperature. 

   TPtrue(d ,r,ec ) = Tcalc (d ,r)(1− ec )  (2) 

Since the analyst does not know ec and it is modeled as a random variable, we can form a distribution of the possible 
true temperature, denoted as fPtrue(T).  Figure 2 illustrates how we arrive at this distribution.  The input random 
variables have initial distributions, denoted as finp(r), and these random variables, in combination with the design 
variables, lead to the distribution of the calculated temperature fcalc(T).  The random computational error is applied, 
leading to the distribution of the possible true temperature fPtrue(T), which has a wider distribution than fcalc(T). 
 

 
Figure 2. Illustration of the variability of the input random variables, calculated value, computational error, 

and resulting uncertainty in the estimate  

 
As previously noted, ec is modeled as a random variable not because it is random, but because its value is unknown. 
To emphasize this point, the actual true temperature is known only when we know the actual value of ec as ec,true as 
illustrated in Eq.(3).   

 
  
Ttrue d ,r( ) = Tcalc (d ,r)(1− ec,true )  (3) 

Figure 3 shows the probability distribution of the true temperature ftrue(T), as well as the pdfs of fcalc(T) and 
fPtrue(T).  For this example, we modeled the variability in the material properties, variability in geometry, with 
normal distributions, and the computational error with a uniform distribution.  The plots of each pdf show the 
probability of exceeding the allowable temperature Tallow, represented by the shaded area where the temperature 
exceeds the allowable.  We chose an example where the computational error is unconservative so the fcalc(T) 
provides an underestimate of the probability of failure given by ftrue(T).  This computational error between mean of 
fcalc(T) and the mean of ftrue(T) is ec,true. However, since we include ec as a random variable, we widened the 
distribution fcalc(T), resulting in fPtrue(T). This provides a more conservative estimate of the probability that can 
compensate for the unconservative calculation. Of course, when the error in the calculation is conservative, this wide 
distribution will grossly overestimate the probability of failure. 
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Figure 3. Example with unconservative calculation of temperature showing that including the error in the 

estimate improves the estimate of the probability of failure 

 
B. True Probability of Failure Calculation 

The true probability of failure of a design d with random variables r can be found when the true computational 
error is known.  This is clearly a hypothetical situation, because the true computational error is not known in reality. 
Here, Monte Carlo simulation (MCS) is used to calculate the true probability of failure.  The limit state equation g is 
formulated as the difference between a capacity C and response R as shown in Eq.(4).   

  (4) 

Since we consider failure to occur when the maximum bottom face sheet temperature exceeds the allowable 
temperature Tallow, the response is Ttrue and the capacity is the allowable temperature.  The true probability of failure 
pf,true is calculated with Eq.(5). 

 
   
p f ,true =

1
N

I g Ci , Ri( )< 0⎡
⎣⎢

⎤
⎦⎥

i=1

N

∑  (5) 

The indicator function I equals 1 if the response exceeds the capacity, and equals 0 for the opposite case. The 
number of samples is N. 
 
C. Estimated Probability of Failure Calculation 

Since the true computational error is unknown, the true probability of failure is unknown as well.  Instead, we 
use the calculated temperature Tcalc and the computational error to determine the estimated probability of failure with 
the limit state equation formulated as in Eq.(6). 

  (6) 

 Since the two types of uncertainty (computational errors and variability in material properties and geometry) in 
the response are independent, Separable Monte Carlo8  (SMC) sampling can be used when evaluating the probability 
of failure.  The limit state equation can be reformulated so that the computational error is on the capacity side, and 
all random variables associated with material properties and geometry are on the response side.   
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g =

Tallow

1− ec

− Tcalc (d ,r) ≡ C − R    (reformulated)  (7) 

The estimated probability of failure pf,est can then be calculated with Eq.(8), where M and N are the number of 
capacity and response samples, respectively.  SMC allows for a large number of comparisons between the response 
and capacity of each limit state, which results in greater accuracy without large computational expense8. This is 
because each response is compared to each capacity in SMC, whereas one response is compared to only one 
capacity in crude Monte Carlo for the same amount of samples M and N. 

 
   
p f ,est =

1
MN

I g C j , Ri( )< 0⎡
⎣⎢

⎤
⎦⎥

j=1

M

∑
i=1

N

∑  (8) 

IV. Including the Effect of a Calibration Test 
We consider a test, performed for the purpose of validating and calibrating a model for a selected design dtest to 

determine the temperature of the test article Ttest. We can further assume that the test article is carefully measured for 
both dtest and rtest.  If no errors are made in the measurements of dtest, rtest, and Ttest, then the experimental result is 
actually the true temperature of the test article.  We denote this error-free test temperature Ttest,true.. 

   
Ttest ,true = Ttrue(dtest ,rtest )  (9) 

 However, because of the measurement error, the measured temperature Tmeas includes the experimental error 
ex,true.   

  (10) 

  Using the computational and experimental results, along with the corresponding error estimates for the test 
article, we are able to refine the calculated value and its error for any design described by the design variables d and 
random variables r.  In this way, the result of the single test can be used to calibrate calculations for other designs. 
We examine two methods, which take different approaches in using the test as calibration.  The first approach 
introduces a simple correction factor based on the test result.   The second uses the Bayesian method to update the 
uncertainty of the calculated value for dtest based on the test result and then transfers this updated uncertainty to other 
calculations as the means of calibration.  
 
 
A. Correction Factor Approach 

The correction factor approach is a fairly straightforward method of calibration.  Taking advantage of the 
assumption that the test result is more accurate than the calculated result for the test article, we can scale Tcalc for any 
value of d and r by the ratio of the test result to the calculated result to obtain the corrected calculation Tcalc,corr. 

  

   (11) 

 
B. Bayesian Updating Approach 

The Bayesian approach uses the experimental result to update the distribution of the temperature of the test 
article described by dtest and rtest.  From this updated temperature distribution of the test article, we obtain an updated 
computational error.  In this formulation, the probability distribution of the temperature of the test article ftest(T) is 
updated as 
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  (12) 

where  is the initial probability distribution of the test article’s temperature based on Tcalc(dtest, rtest) and the 

computational error.  The likelihood function is the conditional probability density of obtaining the test 
result Tmeas given the temperature of the test article.  

Once the updated estimate is known, the Bayesian estimate of the computational error eBayes can be 
found with Eq.(3)., where the value of the temperature of the test article  Ttest is obtained from the final distribution 

. 

  (13) 

Therefore, we can replace the possible true temperature given by Eq.(2) with one that uses the Bayesian estimate 
of the error.   

  (14)  

The additional error eextrap is included to account for the error that occurs when applying this Bayesian estimate 
of the error to some design other than the test design.  This extrapolation error is further described in sub-section 2.   

 
1. Illustrative Example of Calibration by Bayesian Approach 
To illustrate how Bayesian updating is used to calibrate calculations based on a single future test, we consider a 

simple case where both the computational and experimental errors are uniformly distributed.  To simplify the 
problem, we normalize all temperatures by the calculated temperature so that Tcalc(dtest,rtest) = 1.  The error bound of 
the calculation is ±10% and the error bound of the test is ±7%.  The normalized test result is Tmeas = 1.05.  The initial 
probability distribution  and the likelihood function  are described by Eqs. (15) and (16), 
respectively. 

  (15) 

  (16) 

 
Since Tcalc(dtest) = 1 and the computation error bounds are ±10%, the initial distribution of the true temperature is 

= 5 on the interval (0.9, 1.1) and zero elsewhere.  This is shown in Fig. 4.  The test result of Tmeas = 1.05 

results in a likelihood of  = 1/6.8 on the interval (0.98, 1.12) and zero elsewhere.  Equation (12) is used to 

find the updated Ttrue distribution so that  = 8.1 on the interval (0.98, 1.1) and zero elsewhere. 
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Figure 4. Illustrative example of Bayesian updating showing the initial distribution (top), initial distribution 

and test (middle), and updated distribution (bottom). 

 
The updated distribution shows that the true temperature is somewhere on the interval (0.98, 1.1).  Using this 

temperature distribution along with the calculated value Tcalc(dtest), the updated error distribution eBayes can be found.   
Through Eq.(13), we determine that eBayes is uniformly distributed from -10% to 2.35%.  

 
2. Extrapolation Error in Calibration 
 Figure 5 illustrates how the Bayesian approach is used to calibrate the calculations for other designs described 

by d. Here we consider the case when the calculated temperature is linear in the design variable d, and there is no 
variability (random variables fixed at nominal values).   
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Figure 5. Illustration of the calibration using Bayesian updating 

 
At design dtest, we have the same error scenario similar to that illustrated in Figure 4.  That is, we represent the 

calculated temperature at dtest as a point on the solid black line, and the error bounds about this calculation by the 
dotted black lines.  The red star represents the experimentally measured temperature, and the error bars show the 
uncertainty in this temperature.  By the Bayesian approach, we obtain a corrected calculated temperature as 
represented by the point on the orange line (in this situation, this point is the same as the measure temperature), as 
well as updated error bounds represented by the dashed orange line. 

However, this correction and updated error is most accurate at the test design.  Therefore, we apply an additional 
error, the extrapolation error eextrap, when calibrating designs other than dtest.   Note that at dtest the updated error 
bounds in Figure 5 coincide with the error bounds of the test.  As the design becomes increasingly different from 
dtest, the updated error bounds become wider.  

The magnitude of eextrap can be determined by the distance between d and dtest, such that 

  (17) 

This defines the extrapolation error so that it is maximum when the distance between d and dtest is at limit of this 
distance  and zero at the test design. 
 
C. Test-corrected Probability of Failure Estimate 

The corrected probability of failure pf,est-corr after the test can be estimated using the updated error obtained from 
the Bayesian approach.  Separable Monte Carlo is used to calculate pf,est-corr.   

  (18) 

  (19) 
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D. Redesign Based on Test  
Two criteria for redesign are considered, each with different perspectives on the purpose of the redesign.  The 

first is based on the agreement between the measured value and the calculated value for the test article and the 
second considers the estimated probability of failure. 

 
1. Deterministic Redesign  
In deterministic redesign, redesign occurs when there is a significant difference between the experimentally 

measured temperature Tmeas and the expected temperature given by the computational model.  It is assumed that the 
temperature given by the computational model (Tcalc) is the desired value.  Therefore, the component is redesigned 
to restore this original temperature.  

The deterministic redesign criterion is implemented by imposing limits on the acceptable ratio on the limits of 
the measured temperature to the calculated temperature.  Redesign occurs when Tmeas/Tcalc(dtest,rtest) is less than the 
lower limit DL (conservative computational model) and or exceeds the upper limit DU  (unconservative 
computational model). 

 
2. Probabilistic Redesign 
In probabilistic redesign, the original structure is designed for a specified probability of failure, and redesign is 

also done to achieve a specified probability of failure.   It is reasonable to select the target redesign probability pf,target 
to be the same as that obtained with probabilistic design.   Therefore, redesign occurs when the test corrected 
probability of failure estimate, given by Eq.(19) is outside the limits of the acceptable range.  The lower limit of this 
range is denoted PL, and the upper limit PU. 
 

V. Monte Carlo Simulations to Simulate a Future Test 
Monte Carlo simulations are used to simulate the effect of a future test for a design described by design variables 

d and random variables r with the goal of simulating multiple possible outcomes of this test.  To simulate a single 
outcome of the future test, we first obtain a single sample of the true computational and experimental errors.   

Using the calculated value for the test design and the true computational error, we can obtain the true 
temperature by Eq.(3).  Next, the experimentally measured temperature is found using Eq.(10).   The choice can be 
made to calibrate by the correction factor approach or the Bayesian updating approach, and, further, the choice of 
deterministic or probabilistic redesign can be made.   

The true and estimated probabilities of failure after the test can then be determined.  At this point, the effect of 
only one possible outcome of the test has been examined.  The major processes involved in the simulation of a 
single outcome of the test are summarized in the flow chart in Figure 6. 

 

 
Figure 6. Flow chart highlighting the major processes involved in simulating one outcome of a future test.  

Note that a design can be redesigned only once. 
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To determine another possible outcome, the true computational and experimental errors are re-sampled and the 

process is repeated.  Therefore, for n possible outcomes of a future test, we sample n pairs of the errors, have n true 
and estimated probabilities of failure after the test, and n number of designs after the test (if redesign is 
implemented, all designs will not be the same).   
 

VI. Illustrative Example  
In this example, we compare the probabilities of failure of an ITPS with the dimensions and material properties 

of probabilistic optimum found in Ref. 6.  In that study, the optimum was found with constraints on the maximum 
bottom face sheet temperature, buckling of the web, and maximum von Mises stress in the webs with the bottom 
face sheet, web thickness, and foam thickness as the design variables.  The failure considered here is exceeding the 
allowable bottom face sheet temperature Tallow.  All random variables are normally distributed with the mean and 
coefficient of variation (CV) shown in Table 1. 

 
Table 1. ITPS variables 

Variable Symbol Nominal CV (%) 
bottom face sheet thickness tB 7.06 mm 2.89 

foam thickness dS 71.3 mm 2.89 
top face sheet thickness tT 1.2 mm 2.89 

half unit cell length p 34.1 mm 2.89 
angle of corrugation θ 80° 2.89 
density of titanium ρTi 4429 kg/m3 5.77 

density of beryllium ρBe 1850 kg/m3 5.77 
density of foam ρS 24 kg/m3 -- 

thermal conductivity of titanium kTi 7.6 W/m/K 5.77 
thermal conductivity of beryllium kBe 203 W/m/K 5.77 

thermal conductivity of foam kS 0.105 W/m/K 5.77 
specific heat of titanium cTi 564 J/kg/K 5.77 

specific heat of beryllium cBe 1875 J/kg/K 5.77 
specific heat of foam cS 1120 J/kg/K 5.77 

 
   The distributions of ec, and ex are given below in Table 2.  The original estimated probability of failure is 

0.109% and the nominal mass per unit area is 35.1 kg/m2.   
 

Table 2. Distributions of error variables 

Error Distribution  Bounds 
ec Uniform ±10% 
ex Uniform ±3% 

 
The extrapolation error eextrap is calculated so that its value is 2% when d is at the ±10% bound of dtest. 

  (20) 

In this example, we examine the benefits of including a future test by examining several cases that include future 
tests, one without redesign and one with redesign based on the future test by the process described in Sec. V. Using 
the procedure for calculating probabilities of failure with 1000 samples each of the response and capacity, we can 
compare these cases.   
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A. Future Test without Redesign 
Considering 1000 possible outcomes of the single future test, the results in Table 3 were obtained.  We observe 

that the mean true probability of failure is equal to that of the original estimated probability of failure before the test.  
This result is not unexpected as we did not allow redesign, thus preventing any changes in design and probability of 
failure. 

Table 3. Results without including redesign 

Parameter Mean Standard Deviation Minimum Maximum 
pf,true (%) 0.109 0.374 0 2.00 

pf,est-corr (%) 0.108 0.246 0 1.83 
 
 The corrected estimate obtained using the Bayesian approach does well at characterizing the true probability of 
failure after the future test.  We observe that the corrected estimate slightly under predicts the true values, with the 
slightly smaller mean pf,est-corr, standard deviation, and maximum value.  With this approach, we would conclude that 
the design will be safer after the test. 
 
B. Redesign Based on Test  

In this example, we examine the effect of deterministic and probabilistic redesign.  These two redesign 
methodologies are described in Section IV. 

 
1. Deterministic Redesign  
  Deterministic redesign occurs when the Tmeas/Tcalc(dtest,rtest) is greater than 1.05 (unconservative computational 

model), or when Tmeas/Tcalc(dtest,rtest) is less than 0.95 (conservative computational  model).  We consider one design 
variable, the foam thickness ds.  This variable was chosen since it has a large impact on the bottom face sheet 
temperature.      

The results including deterministic redesign are given in Table 4.  Of the 1000 possible outcomes of the future 
test, 507 required redesign.  Conservative cases account for 300 of the redesigns, and unconservative cases account 
for 207.   
 

Table 4. Calibration by the correction factor approach with deterministic redesign 

Parameter Mean Standard Deviation Minimum Maximum 
m (kg/m2) 34.9 2.8 28.9 41.4 
ds

 (mm) 70.4 12.1 44.9 98.5 
pf,true (%) 0.0007 0.0083 0 0.1000 

 
These results show that the true probability of failure is greatly reduced when redesign is allowed.  In addition, the 
standard deviation is also reduced.  Since the redesign is symmetric, it does not cause much change in the average 
mass1. The reason for this drastic reduction in probability of failure is the substantial reduction in error. So while the 
system was designed for a probability of failure of 0.1%, it ended up with a probability of failure of 0.0007%.  

However, we note a large standard deviation in ds, with the minimum and maximum values quite different from 
the design value of 71.3 mm.  In practice, the redesign may not be allowed to be this drastic. Therefore, we also 
examine the case where the bounds of the redesigned ds are restricted to ±10% of the original nominal ds.  These 
results are given in Table 5. 

 

Table 5. Calibration by correction factor with deterministic redesign, bounds of redesigned ds restricted to 
±10% of dtest 

Parameter Mean Standard Deviation Minimum Maximum 
m (kg/m2) 35.0 1.2 33.4 36.7 
ds

 (mm) 70.9 5.1 64.1 78.4 
pf,true (%) 0.0007 0.0083 0 0.1000 

 
                                                             
1 Mass per unit area before redesign is 35.1 kg/m2 
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We observe that restricting the bounds of ds does not change the true probability of failure, and does not cause a 
significant change in the average mass.   

   
2. Probabilistic Redesign 
The deterministic redesign reduced the average true probability of failure to 0.007% with and without bounds on 

the redesigned ds.  Using this result, we examine cases where the target redesign probability is pf,target = 0.01% with 
and without bounds on ds.  Here, we require redesign to occur when the estimated probability of failure pf,est is not 
within ±50% of the target, but reject the redesign if it does not decrease the mass by at least 4%.  Since only one 
design variable, the foam thickness, is considered, a decrease in mass can only result from a decrease in foam 
thickness, which causes an increase in temperature.  Therefore, the probability of failure can only be increased as a 
result of this redesign. 

Of the 1000 possible outcomes of the future test, 598 are redesigned.  Even with the requirement of a 4% 
decrease in mass, conservative models (pf,est less than target) account for all of the redesigns.  This large number of 
conservative models is due to 718 of the 1000 cases having a pf,est of zero (due to the limited accuracy of the MC 
simulation) before the test.   The results are shown in Table 6. 

 

Table 6. Calibration by the Bayesian updating approach with probability of failure based redesign 
(pf,target=0.01%) 

Restriction on 
redesigned ds 

Parameter Mean Standard Deviation Minimum Maximum 

m (kg/m2) 32.7 2.2 28.0 35.1 
ds

 (mm) 61.2 9.6 41.0 71.3 
pf,est-corr (%) 0.474 1.126 0 10.77 
pf,est-corr (%) 
(no eextrap) 

0.036 0.144 0 1.83 

No bounds 

pf,true (%) 0.035 0.195 0 1.83 
m (kg/m2) 34.1 0.8 33.4 35.1 
ds

 (mm) 67.0 3.5 64.1 71.3 
pf,est-corr (%) 0.034 0.145 0 1.83 
pf,est-corr (%) 
(no eextrap) 

0.032  0.145 0 1.83 

Within ±10% of 
dtest 

pf,true (%) 0.032 0.195 0 1.83 
 

Without bounds on the redesigned ds, we observe that the true probability of failure is unable to converge to the 
target probability of failure of 0.01%, but we benefit from a significant reduction in mass and a reduction in the 
original mean true probability of failure from 0.109% to 0.035%.  However, the estimated probability of failure, 
which includes the extrapolation error, leads us to believe that the design is made less safe overall.  When this 
extrapolation error is not included, the estimated probability of failure provides a fairly accurate prediction of the 
true probability of failure, thus displaying the need to have reasonable bounds on the design variables to prevent 
large extrapolation errors.     

  When we include the bounds on ds, the true probability of failure still does not converge to the target 
probability of failure, but there is better agreement between the estimated probabilities of failure (with and without 
the extrapolation error) and the true value.  Due to the restricted bounds on ds, the extrapolation error does not reach 
a value larger than 2%, which consequently prevents a gross overestimate of the probability of failure.  We also note 
a 2.9% reduction in mass from the original value. 

VII. Conclusion 
This study presented a methodology to include the effect of a single future test followed by redesign on the 

probability of an integrated thermal protection system.  Two ways of calibration and redesign based on the test were 
presented.  We observed that the deterministic approach, which represents current design/redesign practices, leads to 
a greatly reduced probability of failure after the test and redesign, a reduction that usually is not quantified.  

The probabilistic approach includes the Bayesian technique for calibrating the temperature calculation and re-
design to a target probability of failure. It provides a way to accurately estimate the true probability of failure after 
the test.  In addition, it allows us to trade weight against safety. 
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Future work includes incorporating the effect of the future test into the optimization of the ITPS.  This study has 
brought to light many tunable parameters in the test, such as the bounds on the design variables, the target 
probability of failure for redesign, and the redesign criterion itself.  By including these parameters into the 
optimization, we will not only optimize the design but optimize the test as well. 
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